

Tricuspid atresia

Definition/Anatomy

- The tricuspid valve is absent
- Anatomic Subtypes:
 - o Type 1: Tricuspid atresia with normally related great arteries (70%)²
 - Type 2: Tricuspid atresia with transposed great arteries
 - D-TGA (25%)
 - L-TGA (3-6%)
 - Then further subdivided in terms of size of VSD/bulboventricular foramen and restriction to pulmonary or systemic blood flow (atresia, stenosis, no obstruction).
- Associated defects such as ASD, VSD/bulboventricular foramen, or PDA are necessary for survival.

Incidence

1-2 in 10,000 live births

1.6-2% of CHD (STSS database)¹

20% of patients have other associated cardiac anomalies (right aortic arch, LSVC, coarctation, aortic arch hypoplasia)

Associated problems

- Genetics may play a role in some cases:
 - Can be associated with 22q11 deletion, 4q31 deletion, 8p23 deletion, 3p deletion, trisomy 13, trisomy 18, trisomy 21
 - Mutations in ZFPM2 (FOG2), HEY2, NFATC1, NKX2.5, and MYH6 genes reported

Fetal Imaging Predictors of Postnatal Management/Outcome

- Management is affected by subtype of tricuspid atresia
- Size of VSD/bulboventricular foramen determines degree of shunting from LV to RV.
 - If ventriculoarterial connections are concordant, the VSD/bulboventricular foramen size affects the amount of flow across the pulmonary valve, determining pulmonary avlave annulus size and potential for ductal dependent pulmonary blood flow postnatally
 - If ventriculoarterial connections are discordant, the VSD/bulboventricular foramen size affects the amount of flow across the aortic valve, determining aortic valve annulus size, aortic arch development, and potential for ductal dependent systemic blood flow postnatally

Single ventricle palliative surgeries

Timing and type of postnatal palliation are determined by the anatomy

- Restrictive pulmonary blood flow will require BTS vs ductal stenting
- Unrestrictive pulmonary blood flow will require a PA band
- Systemic outflow obstruction or arch hypoplasia will require a modified Norwood or arch repair and PA band.
- In a balanced circulation with concordant AV connections and pulmonary valve stenosis, their first surgery may be a bidirectional Glenn.

Outcomes³⁻⁵

8 year Fontan survival 84% (Emory group)⁶

10 year Fontan survival 82% (Toronto group)⁷

All the long-term issues associated with Fontan physiology (PLE, plastic bronchitis) and possible need for heart transplant if left ventricular dysfunction develops

Neurodevelopmental outcomes

Much of the data focuses on HLHS patients, which can likely be correlated somewhat if a neonatal Norwood was needed

However, if the initial surgery is a PA band or no surgery until the Glenn neurodevelopmental outcomes are better⁸

References

- 1. Murthy R, Nigro J, Karamlou T. Tricuspid Atresia. In: *Critical Heart Disease in Infants and Children*. Elsevier; 2019:765-777.e3. doi:10.1016/B978-1-4557-0760-7.00065-6
- 2. Karamlou T, Ashburn DA, Caldarone CA, et al. Matching procedure to morphology improves outcomes in neonates with tricuspid atresia. *J Thorac Cardiovasc Surg.* 2005;130(6):1503-1510. doi:10.1016/j.jtcvs.2005.07.024
- 3. Wald RM, Tham EB, McCrindle BW, et al. Outcome after prenatal diagnosis of tricuspid atresia: A multicenter experience. *Am Heart J.* 2007;153(5):772-778. doi:10.1016/j.ahj.2007.02.030
- 4. Alsoufi B, Manlhiot C, Ehrlich A, et al. Results of palliation with an initial pulmonary artery band in patients with single ventricle associated with unrestricted pulmonary blood flow. *J Thorac Cardiovasc Surg.* 2015;149(1):213-220. doi:10.1016/j.jtcvs.2014.08.007
- 5. Wilder TJ, Ziemer G, Hickey EJ, et al. Surgical management of competing pulmonary blood flow affects survival before Fontan/Kreutzer completion in patients with tricuspid atresia type I. *J Thorac Cardiovasc Surg*.

- 2015;150(5):1222-1230.e7. doi:10.1016/j.jtcvs.2015.05.067
- 6. Alsoufi B, Schlosser B, Mori M, et al. Influence of Morphology and Initial Surgical Strategy on Survival of Infants With Tricuspid Atresia. *Ann Thorac Surg*. 2015;100(4):1403-1409; discussion 1409-10. doi:10.1016/j.athoracsur.2015.05.037
- 7. Sittiwangkul R, Azakie A, Van Arsdell GS, Williams WG, McCrindle BW. Outcomes of tricuspid atresia in the Fontan era. *Ann Thorac Surg*. 2004;77(3):889-894. doi:10.1016/j.athoracsur.2003.09.027
- 8. Bellinger DC, Watson CG, Rivkin MJ, et al. Neuropsychological Status and Structural Brain Imaging in Adolescents With Single Ventricle Who Underwent the Fontan Procedure. *J Am Heart Assoc.* 2015;4(12). doi:10.1161/JAHA.115.002302
- 9. Alsoufi B, Slesnick T, McCracken C, et al. Current Outcomes of the Norwood Operation in Patients With Single-Ventricle Malformations Other Than Hypoplastic Left Heart Syndrome. *World J Pediatr Congenit Hear Surg.* 2015;6(1):46-52. doi:10.1177/2150135114558069